Answer :
[tex](\stackrel{x_1}{-10}~,~\stackrel{y_1}{3})\qquad(\stackrel{x_2}{-8}~,~\stackrel{y_2}{-8})\\\\\\% slope = m\stackrel{slope}{m}\implies\cfrac{\stackrel{rise}{\stackrel{y_2}{-8}-\stackrel{y1}{3}}}{\underset{run}{\underset{x_2}{-8}-\underset{x_1}{(-10)}}}\implies \cfrac{-11}{-8+10}\implies \cfrac{-11}{2}[/tex]
[tex]\begin{array}{|c|ll}\cline{1-1}\textit{point-slope form}\\\cline{1-1}\\y-y_1=m(x-x_1)\\\\\cline{1-1}\end{array}\implies y-\stackrel{y_1}{3}=\stackrel{m}{-\cfrac{11}{2}}[x-\stackrel{x_1}{(-10)}]\\\\\\ y-3=-\cfrac{11}{2}(x+10)\implies y-3=-\cfrac{11}{2}x-55\implies y = -\cfrac{11}{2}x-52[/tex]