Answer :
Step-by-step explanation:
[tex] = \lim \limits_{x \to6} \frac{ {x}^{2} - 36 }{x - 6} [/tex]
[tex] = \lim \limits_{x \to6} \frac{(x + 6) \cancel{(x - 6)}}{ \cancel{x - 6}} [/tex]
[tex] = \lim \limits_{x \to6}x + 6[/tex]
[tex] = 6 + 6[/tex]
[tex] = 12[/tex]
[tex]▪▪▪▪▪▪▪▪▪▪▪▪▪ {\huge\mathfrak{Answer}}▪▪▪▪▪▪▪▪▪▪▪▪▪▪[/tex]
[tex] \boxed{ \boxed{6}}[/tex]
[tex] \large \boxed{ \mathfrak{Step\:\: By\:\:Step\:\:Explanation}}[/tex]
Let's solve ~
- [tex]\sf \lim\limits_{x \to 6} \dfrac{x^2-36}{x-6}[/tex]
- [tex]\sf \lim\limits_{x \to 6} \dfrac{ {x}^{2} - {6}^{2} }{x - 6} [/tex]
- [tex] \sf\lim\limits_{x \to 6} \dfrac{(x + 6)(x - 6)}{(x - 6)} [/tex]
- [tex]\sf \lim\limits_{x \to 6} \: x + 6[/tex]
Removing limit (by Plugging x as 6)
- [tex]6 + 6[/tex]
- [tex]12[/tex]
[tex]\mathrm{✌TeeNForeveR✌}[/tex]