Solve the formula to solve for L in terms of pie T and g

Answer:
[tex]\frac{T^{2} g}{4\pi ^{2} } =L[/tex]
Step-by-step explanation:
Hey there,
[tex]T=2\pi \sqrt{\frac{L}{g} }\\\frac{T}{2\pi } =\frac{2\pi \sqrt{\frac{L}{g} } }{2\pi } \\\frac{T}{2\pi } =\sqrt{\frac{L}{g} } \\(\frac{T}{2\pi }) ^{2} =\frac{L}{g} \\\frac{T^{2} }{4\pi ^{2} } =\frac{L}{g} \\[/tex]
Use cross multiplication
[tex]T^{2} g=4\pi ^{2} L\\\frac{T^{2} g}{4\pi ^{2} } =\frac{4\pi ^{2} L}{4\pi ^{2} } \\\\\frac{T^{2} g}{4\pi ^{2} } =L[/tex]
Hope this helps you.
Let me know if you have any other questions :-)