Answer :
[tex]\\ \sf{:}\Rrightarrow {\displaystyle{\lim_{x\to -3}}}\dfrac{x^2-9}{x^2+2x-3}[/tex]
[tex]\\ \sf{:}\Rrightarrow {\displaystyle{\lim_{x\to -3}}}\dfrac{(x+3)(x-3)}{x^2+3x-x-3}[/tex]
[tex]\\ \sf{:}\Rrightarrow {\displaystyle{\lim_{x\to -3}}}\dfrac{\cancel{(x+3)}(x-3)}{\cancel{(x+3)}(x-1)}[/tex]
[tex]\\ \sf{:}\Rrightarrow {\displaystyle{\lim_{x\to -3}}}\dfrac{x-3}{x-1}[/tex]
- Apply limits
[tex]\\ \sf{:}\Rrightarrow \dfrac{-3-3}{-3-1}[/tex]
[tex]\\ \sf{:}\Rrightarrow \dfrac{-6}{-4}[/tex]
[tex]\\ \sf{:}\Rrightarrow \dfrac{3}{2}[/tex]