Answer :
Recall the definition of absolute value:
[tex]|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}[/tex]
Then we have a few cases to consider:
• If [tex]4x-5\ge0[/tex] and [tex]-x+5\ge0[/tex], the equation simplifies to
[tex]4x-5 = -x+5 \implies 5x=10 \implies \boxed{x=2}[/tex]
• If [tex]4x-5<0[/tex] and [tex]-x+5\ge0[/tex], we get
[tex]-(4x-5) = -x + 5 \implies -3x = 0 \implies \boxed{x=0}[/tex]
• If [tex]4x-5\ge0[/tex] and [tex]-x+5<0[/tex], then
[tex]4x-5 = -(-x+5) \implies 3x=0 \implies x=0[/tex]
but we already have this solution.
• If [tex]4x-5<0[/tex] and [tex]-x+5<0[/tex], then
[tex]-(4x-5) = -(-x+5) \implies -5x = -10 \implies x=2[/tex]
which we also already found.