Calculate the value of 0. Write your equation.

Answer:
θ = 67.4°
Step-by-step explanation:
using the SOHCAHTOA method,
Here opposite is 12 cm, hypotenuse is 13 cm, adjacent is 5 cm.
Using the formula:
[tex]sin(\beta ) = \frac{oppsoite }{hypotenuse}[/tex]
[tex]sin(\beta ) = \frac{12}{13}[/tex]
[tex]\beta = sin^{-1}(\frac{12}{13} )[/tex]
β = 67.4°
Right angle triangle so apply trigonometric identies.
[tex]\\ \tt\hookrightarrow cos\theta=\dfrac{5}{13}[/tex]
[tex]\\ \tt\hookrightarrow cos\theta=0.37[/tex]
[tex]\\ \tt\hookrightarrow \theta=cos^{-1}(0.37)[/tex]
[tex]\\ \tt\hookrightarrow \theta=68.3[/tex]