Given: ABCD is a parallelogram GEC ∠GEC≅∠HFA and AE ≅ FC .
Prove: △GEC≅△HFA.

Answer:
Step-by-step explanation:
3) Congruent segments added to congruent segments form congruent segments
4) [tex]\overline{AD} \parallel \overline{BC}[/tex] (opposite sides of a parallelogram are parallel)
5) [tex]\angle FAH \cong \angle GCE[/tex] (if 2 parallel lines are cut by a transversal, the alternate interior angles are congruent)
6) [tex]\triangle GEC \cong \triangle HFA[/tex] (ASA)