👤

Answer :

Answer:

x = 9,-21

Step-by-step explanation:

Given:

[tex]\displaystyle \large{|x+6|-7=8}[/tex]

Transport -7 to add 8:

[tex]\displaystyle \large{|x+6|=8+7}\\\displaystyle \large{|x+6|=15}[/tex]

Cancel absolute sign and add plus-minus to 15:

[tex]\displaystyle \large{x+6=\pm 15}[/tex]

Transport 6 to subtract ±15:

[tex]\displaystyle \large{x=\pm 15-6}[/tex]

Consider:

[tex]\displaystyle \large{x= 15-6}[/tex] or [tex]\displaystyle \large{x = -15-6}[/tex]

[tex]\displaystyle \large{x=9}[/tex] or [tex]\displaystyle \large{x=-21}[/tex]

Solution:

[tex]\displaystyle \large{x = 9}[/tex] or [tex]\displaystyle \large{x=-21}[/tex]

__________________________________________________________

Second Method

Given:

[tex]\displaystyle \large{|x+6|-7=8}[/tex]

Transport -7 to add 8:

[tex]\displaystyle \large{|x+6|=8+7}\\\displaystyle \large{|x+6|=15}[/tex]

Absolute Function Property:

[tex]\displaystyle \large{|x-a| = \begin{cases} x-a \ \ (x \geq a) \\ -x+a \ \ (x < a) \end{cases}}[/tex]

Consider both intervals:

When x ≥ a then:

[tex]\displaystyle \large{|x+6|=15}\\\displaystyle \large{x+6=15}[/tex]

Transport 6 to subtract 15:

[tex]\displaystyle \large{x=15-6}\\\displaystyle \large{x=9}[/tex]

When x < a then:

[tex]\displaystyle \large{|x+6|=15}\\\displaystyle \large{-(x+6)=15}\\\displaystyle \large{-x-6=15}[/tex]

Transport -6 to add 15:

[tex]\displaystyle \large{-x=15+6}\\\displaystyle \large{-x=21}[/tex]

Transport negative sign to 21:

[tex]\displaystyle \large{x=-21}[/tex]

Solution:

[tex]\displaystyle \large{x=9}[/tex] or [tex]\displaystyle \large{x=-21}[/tex]

__________________________________________________________

Let me know if you have any questions regarding this question, my answer or explanation. Hope this answer and explanation helps you and good luck with your assignment!

Go Teaching: Other Questions