Answer :
Answer:
[tex]\sf (x+9)^2+(y-5)^2=16[/tex]
Step-by-step explanation:
Standard equation of a circle: [tex]\sf (x-h)^2+(y-k)^2=r^2[/tex]
(where (h, k) is the center of the circle and r is the radius)
Given:
- center = (-9, 5)
- radius = 4
Substituting given values into the equation:
[tex]\sf \implies (x-(-9))^2+(y-5)^2=4^2[/tex]
[tex]\sf \implies (x+9)^2+(y-5)^2=16[/tex]
- (h,k)=(-9,5)
- r=4
Equation:-
- (x-h)²+(y-k)²=r^2
- (x-(-9))2+(y-5)^2=4^2
- (x+9)^2+(y-5)^2=16
- x^2+18x+81+y^2-10x+25=16[/tex]
- [tex]\\ \rm\rightarrowtail x^2+y^2+8x+90=0[/tex]