👤

Answer :

Answer:

  • Parent Function:  [tex]y=\sqrt{x}[/tex]
  • Horizontal shift: right 3 units
  • Vertical shift: up 3 units
  • Reflection about the x-axis: none
  • Vertical strech: streched

Step-by-step explanation:

assume that [tex]y=\sqrt{x}[/tex] is [tex]f(x)=\sqrt{x}[/tex] and [tex]y=\sqrt{-2x+6}+3[/tex] is

[tex]g(x)=\sqrt{-2x+6}+3\\ f(x)=\sqrt{x} \\g(x)=\sqrt{-2x+6}+3[/tex]

The transformation from the first equation to the second equation can be found by finding a,h and k for each equation.

[tex]y=a\sqrt{x-h}+k[/tex]

factor a 1 out of the absolute value to make the coefficient of x equal to 1

[tex]y=\sqrt{x}[/tex]

factor a 2 out of the absolute value to make the coefficient of x equal to 1

[tex]y=\sqrt{2}\sqrt{x-3}+3[/tex]

find a, h and k for [tex]y=\sqrt{2}\sqrt{x-3}+3[/tex]

[tex]a=1.41421356\\ h=3\\k=3[/tex]

the horizontal shift depends on the value of h when [tex]h > 0[/tex], the horizontal shift is described as:

[tex]g(x)=f(x+h)[/tex] - the graph is shifted to the left h units

[tex]g(x)=f(x-h)\\[/tex] - the graph is shifted to the right h units

the vertical shift depends on the value of k