Answer :
now, let's make the assumption that the arcXZ has a central angle of 135° and a radius of 17.
[tex]\textit{arc's length}\\\\ s=\cfrac{\theta \pi r}{180}~~ \begin{cases} r=radius\\ \theta =\stackrel{degrees}{angle}\\[-0.5em] \hrulefill\\ r=17\\ \theta =135 \end{cases}\implies s=\cfrac{(135)\pi (17)}{180}\implies s=\cfrac{51\pi }{4}\implies s\approx 40.06[/tex]