Answer :
Answer:
7/32
Step-by-step explanation:
≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡
To find a fraction between 1/4 and 1/5:
1. Make common denominators with both fractions. The larger the common denominator, the more you will find.
2. Choose any fraction between 1/4 and 1/5. That fraction will be in between 1/4 and 1/5.
≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡
[tex]\dfrac{1}{4}\ \text{and }\dfrac{1}{5} \ \rightarrow \ \dfrac{1 \times 40}{4 \times 40} \ \text{and} \ \dfrac{1 \times 32}{5 \times 32} \ \rightarrow \ \dfrac{40}{160} \ \text{and} \ \dfrac{32}{160}[/tex]
Now, you may choose any fraction between 40/160 and 32/160.
My chosen fraction is 35/160, which when simplified, gives 7/32.
≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡
Answer:
[tex]\dfrac{9}{40}[/tex]
Step-by-step explanation:
Subtract 1/5 from 1/4, divide by 2, then add to 1/5:
[tex]\implies \dfrac{\frac14-\frac15}{2}+\dfrac15[/tex]
[tex]\implies \dfrac{\frac{5}{20}-\frac{4}{20}}{2}+\dfrac15[/tex]
[tex]\implies \dfrac{\frac{1}{20}}{2}+\dfrac15[/tex]
[tex]\implies \dfrac{1}{20} \times \dfrac12+\dfrac15[/tex]
[tex]\implies \dfrac{1}{40}+\dfrac15[/tex]
[tex]\implies \dfrac{1}{40}+\dfrac{8}{40}[/tex]
[tex]\implies \dfrac{9}{40}[/tex]
