Answer :
[tex]\\ \rm\Rrightarrow (f+g)(x)[/tex]
[tex]\\ \rm\Rrightarrow f(x)+g(x)[/tex]
[tex]\\ \rm\Rrightarrow x^2-4x+6+2x^2+2x-5[/tex]
[tex]\\ \rm\Rrightarrow 3x^2-2x+1[/tex]
Done!
Answer:
[tex](f+g)(x)=3x^2-2x+1[/tex]
Step-by-step explanation:
[tex]\begin{aligned}\textsf{Given functions}: \quad f(x) &=x^2-4x+6\\g(x) &=2x^2+2x-5\\\end{aligned}[/tex]
[tex]\begin{aligned}(f+g)(x) & =f(x)+g(x)\\& =(x^2-4x+6)+(2x^2+2x-5)\\& =x^2-4x+6+2x^2+2x-5\\& =x^2+2x^2-4x+2x+6-5\\& =3x^2-2x+1\end{aligned}[/tex]