Answer :
Answer: [tex]\text \large S_{20} \ = \sf \dfrac{4\left(9^{20}-8^{20}\right)}{3^{38}} \ \ \ or \ \ \ 32.586[/tex]
Given expression:
[tex]\boxed{\sf \sum _{n=1}^{20}\:4\left(\frac{8}{9}\right)^{n-1}}[/tex]
Identify the following:
- First Term (a) = 4(8/9)¹⁻¹ = 4
- Common ratio (r) = 8/9
- Total Terms (n) = 20
Formula Required:
[tex]\rightarrow \quad \sf S_n = \dfrac{a(r^n - 1)}{r-1}[/tex]
Insert values identified:
[tex]\rightarrow \sf S_{20} = \dfrac{4(\dfrac{8}{9}^{20} - 1)}{\dfrac{8}{9} -1} \quad\overset{simplify}{\longrightarrow} \quad \dfrac{4\left(9^{20}-8^{20}\right)}{3^{38}} \quad \xrightarrow{\text{In \ Decimals} }\quad 32.58609013[/tex]