👤

Answer :

Answer:

[tex]\frac{\left(3x^2-6x+3\right)}{\left(x-1\right)3x-93x^2-3x^3x-33x^2-6}: -\frac{\left(x-1\right)^2}{x^4+41x^2+x+2}[/tex]
[tex]\frac{3x^2-6x+3}{\left(x-1\right)\cdot \:3x-126x^2-3x^3x-6}[/tex]
[tex]\frac{3\left(x-1\right)^2}{\left(x-1\right)\cdot \:3x-126x^2-3x^3x-6}[/tex]
[tex]\frac{3\left(x-1\right)^2}{-3\left(x^4+41x^2+x+2\right)}[/tex]
[tex]\frac{\left(x-1\right)^2}{-\left(x^4+41x^2+x+2\right)}[/tex]
[tex]-\frac{\left(x-1\right)^2}{x^4+41x^2+x+2}[/tex]

Answer:

3x-3

Step-by-step explanation:

use synthetic division

Go Teaching: Other Questions