👤

Answer :

Let's see

[tex]\\ \rm\Rrightarrow (x^{22}-3x^5+x^{-2}-7)5x^4[/tex]

Use distributive law

  • a(b+c)=ab+ac

[tex]\\ \rm\Rrightarrow 5x^{22+4}-15x^{5+4}+5x^{-2+4}-35x^4[/tex]

[tex]\\ \rm\Rrightarrow 5x^{26}-15x^9+5x^2-35x^4[/tex]

Answer:

[tex]5x^{26}-15x^{9}+5x^{2}-35x^4[/tex]

Step-by-explanation:

Given expression:

[tex](x^{22}-3x^5 + x^{-2} - 7) (5x^4)[/tex]

Use the Distributive Property Law  (b ± c)a = ab ± ac
to remove the parentheses:

[tex]\implies 5x^4 \cdot x^{22}-5x^4 \cdot 3x^5+5x^4 \cdot x^{-2}-5x^4 \cdot 7[/tex]

Simplify by multiplying the coefficients of each term:

[tex]\implies 5x^4 \cdot x^{22}-15x^4 \cdot x^5+5x^4 \cdot x^{-2}-35x^4[/tex]

[tex]\textsf{Apply exponent rule} \quad a^b \cdot a^c=a^{b+c}[/tex]:

[tex]\implies 5x^{4+22}-15x^{4+5}+5x^{4-2}-35x^4[/tex]

[tex]\implies 5x^{26}-15x^{9}+5x^{2}-35x^4[/tex]