Answer :
The transformation of a function may involve any change. The function f(x) is vertically stretched and shifted 5 units upwards to form h(x).
How does the transformation of a function happen?
The transformation of a function may involve any change.
Usually, these can be shifted horizontally (by transforming inputs) or vertically (by transforming output), stretched (multiplying outputs or inputs) etc.
If the original function is y = f(x), assuming the horizontal axis is the input axis and the vertical is for outputs, then:
Horizontal shift (also called phase shift):
- Left shift by c units, y=f(x+c) (same output, but c units earlier)
- Right shift by c units, y=f(x-c)(same output, but c units late)
Vertical shift
- Up by d units: y = f(x) + d
- Down by d units: y = f(x) - d
Stretching:
- Vertical stretch by a factor k: y = k \times f(x)
- Horizontal stretch by a factor k: y = f(\dfrac{x}{k})
The function f(x)=x^(1/3) is transformed to form the function of h(x)=(2x)^(1/3)+5. Therefore, the transformation made to the function is,
Vertically stretched by a factor of 2^(1/3) ⇒ 2^(1/3) × x^(1/3) = (2x)^(1/3)
Up by 5 units ⇒ (2x)^(1/3) + 5
Hence, the function f(x) is vertically stretched and shifted 5 units upwards to form h(x).
Learn more about Transforming functions:
https://brainly.com/question/17006186
#SPJ1
