Answer :
Answer:
x = 6
Explanation:
completing square:
[tex]y=x^2-12x+7[/tex]
[tex]y=(x^2-12x)+7[/tex]
[tex]y=(x-6)^2+7-(-6)^2[/tex]
[tex]y=(x-6)^2+7-36[/tex]
[tex]y=(x-6)^2-29[/tex]
Comparing with quadratic equation [tex]y=ax^2 + bx+c[/tex], in vertex form where [tex]y = a(x-h)^2+k[/tex]. In this x - h = 0, x = h defines the symmetry of equation.
So here the symmetry for parabola:
x - 6 = 0
x = 6
Answer:
x = 6
Step-by-step explanation:
The axis of symmetry of a parabola is the x-value of its vertex.
For a quadratic function in the form [tex]y=ax^2+bx+c[/tex], the x-value of the vertex is:
[tex]x=-\dfrac{b}{2a}[/tex]
Given function:
[tex]y=x^2-12x+7[/tex]
Therefore:
[tex]a=1, \quad b=-12, \quad c=7[/tex]
So the axis of symmetry of the given quadratic function is:
[tex]\implies x=-\dfrac{b}{2a}=-\dfrac{-12}{2(1)}=\dfrac{12}{2}=6[/tex]