Solve the equation x=³ for r.
A. r = √3x (5)
5T
3x
OB.T=√
r
O c. r = √
3x
D. r= √3x - 5

Answer:
[tex]\sqrt[n3]{(3x)/(5\pi) }[/tex] = r
Step-by-step explanation:
x = 5/3 pi r^3
Solve for r
Multiply each side by 3
3x = 5 pi r^3
Divide each side by 5 pi
3x / ( 5pi) = r^3
Take the cube root of each side
[tex]\sqrt[n3]{(3x)/(5\pi) }[/tex] = r