👤

z=3 – 43Find the angle 8 (in radians) that makes in the complex plane.Round your answer, if necessary, to the nearest thousandth. Express between - and T.Show Calculator

Z3 43Find The Angle 8 In Radians That Makes In The Complex PlaneRound Your Answer If Necessary To The Nearest Thousandth Express Between And TShow Calculator class=

Answer :

Given:-

[tex]z=3-4i[/tex]

To find:-

The angle.

Complex number will be denoted as,

[tex]z=x+iy[/tex]

So the value of x and y are,

[tex]x=3,y=-4[/tex]

At first we need to find the value of r.

The formula to calculate r is,

[tex]r=\sqrt[]{x^2+y^2}[/tex]

Substituting the values. we get,

[tex]\begin{gathered} r=\sqrt[]{3^2+(-4)^2} \\ r=\sqrt[]{9+16} \\ r=\sqrt[]{25} \\ r=5 \end{gathered}[/tex]

Now we use the angle formula,

[tex]\cos \theta=\frac{x}{r}[/tex]

Substituting the value. we get,

[tex]\begin{gathered} \cos \theta=\frac{3}{5} \\ \end{gathered}[/tex]

So the value of theta is,

[tex]\theta=\cos ^{-1}(\frac{3}{5})[/tex]

Go Teaching: Other Questions