Answer :
We will determine the distance fallen as follows:
[tex]d=v_it+\frac{1}{2}at^2[/tex]Thus:
[tex]d=(m/s)(15s)+\frac{1}{2}(9.8m/s^2)(15s)^2\Rightarrow d=1102.5m[/tex]So, it traveled 1102.5 meters.
We will determine the distance fallen as follows:
[tex]d=v_it+\frac{1}{2}at^2[/tex]Thus:
[tex]d=(m/s)(15s)+\frac{1}{2}(9.8m/s^2)(15s)^2\Rightarrow d=1102.5m[/tex]So, it traveled 1102.5 meters.