👤

Answer :

To evaluate

[tex]co\sec (\frac{11\pi}{3})[/tex]

But we need to understand the identity of cosecant

[tex]\text{cosecant}\theta=\frac{1}{\text{sin}\theta}[/tex][tex]co\sec (\frac{11\pi}{3})=\frac{1}{\sin(\frac{11\pi}{3})}[/tex]

Simplifying further

[tex]\frac{1}{\sin(\frac{11\pi}{3})}=\frac{1}{\sin (660)}=\frac{1}{\frac{-\sqrt[]{3}}{2}}[/tex]

[tex]\Rightarrow\frac{-2}{\sqrt[]{3}}[/tex]

Rationalizing the denominator

[tex]\frac{-2}{\sqrt[]{3}}\times\frac{\sqrt[]{3}}{\sqrt[]{3}}=\frac{-2\sqrt[]{3}}{3}[/tex]

Thus, the answer is:

[tex]\frac{-2\sqrt[]{3}}{3}[/tex]