👤

Answer :

Given:

Function is:

[tex]P(v)=\begin{cases}0.7v+u\text{ if }_0\leq v\leq90 \\ 0.7v\text{ if }v>90\end{cases}[/tex]

Find-:

(a)

Value of P(100)

(b)

Average rate of change [ 30, 120]

(c)

Function is linear or not

(d)

P(v)=v

Explanation-:

Value of P(100)

[tex]\begin{gathered} P(100)\text{ is:} \\ \\ v>90 \\ \\ P(v)=0.7v \\ \\ P(100)=0.7\times100 \\ \\ P(100)=70 \end{gathered}[/tex]

(b)

Average rate of change

[tex]P(v)=\begin{cases}0.7v+u\text{ if}0\leq v\leq90 \\ 0.7v\text{ if}v>90\end{cases}[/tex][tex]P^{\prime}(v)=\begin{cases}0.7 \\ 0.7\end{cases}[/tex]

u is constant is then the rate of change is 0.7

(c)

A linear equation is:

Function is:

[tex]y=mx+c[/tex]

The given function is a linear function.

(d)

For equilibrium

[tex]\begin{gathered} P(v)=v \\ \\ \end{gathered}[/tex]

Check for v

[tex]\begin{gathered} P(v)=v \\ \\ 0.7v+u=v \\ \\ u=0.6v \end{gathered}[/tex]

at u = 0.6v function value is equilibrium.