👤

Find the slope of the line that passes through each pair of points. 1) A(-3,-2), B(5,4)2) D(-4,5), E(3,5)3) M(6,10), N(6,1)4) W(0,1), Z(3,7)5) R(-7,3), T(-7,-8)6) K(-2,-8), L(10,-8)please help its due in 15 minutes.

Answer :

Answer:

1) 3/4

2) 0, horizontal line

3)undefined, vertical line

4) 2

5) undefined, vertical line

6) 0, horizontal line

Step by step explanation:

The slope of a line is represented by the following expression:

[tex]\begin{gathered} m=\frac{y_2-y_1}{x_2-x_1} \\ \text{where,} \\ (x_1,y_1)=\text{given point} \\ (x_2,y_2)=\text{given point} \end{gathered}[/tex]

Now, applying this formula we can find each slope:

1)

[tex]\begin{gathered} m=\frac{4-(-2)}{5-(-3)} \\ m=\frac{6}{8}=\frac{3}{4} \end{gathered}[/tex]

2)

[tex]m=\frac{5-5}{3-(-4)}=\frac{0}{7}=0\rightarrow horizontal\text{ line}[/tex]

3)

[tex]\begin{gathered} m=\frac{1-10}{6-6} \\ m=\frac{9}{0}=\text{undefined }\rightarrow vertical\text{ line} \end{gathered}[/tex]

4)

[tex]\begin{gathered} m=\frac{7-1}{3-0} \\ m=\frac{6}{3}=2 \end{gathered}[/tex]

5)

[tex]\begin{gathered} m=\frac{-8-3}{-7-(-7)} \\ m=\frac{-11}{0}=\text{undefined }\rightarrow vertical\text{ line} \end{gathered}[/tex]

6)

[tex]\begin{gathered} m=\frac{-8-(-8)}{10-(-2)} \\ m=\frac{0}{12}=0\rightarrow Horizontal\text{ line} \end{gathered}[/tex]

Go Teaching: Other Questions