Answer :
Given
Rectangle
Find
Perimeter of this rectangle
Explanation
First we will find the sides of given rectangle by using distance formula
[tex]\begin{gathered} AB=\sqrt{(x_2-x_1)^2+\left(y_2-y_2\right)^2}=(x_2-x_1) \\ BC=\sqrt{(x_2-x_2)^2+(y_1-y_2)^2}=(y_1-y_2) \\ CD=\sqrt{(x_2-x_1)^2+(y_1-y_1)^2}=(x_2-x_1) \\ DA=\sqrt{(x_1-x_1)^2+(y_1-y_2)^2}=(y_1-y_2) \end{gathered}[/tex]so, the perimeter =
[tex]\begin{gathered} x_2-x_1+y_1-y_2+x_2-x_1+y_1-y_2 \\ 2(x_2-x_1+y_1-y_2) \end{gathered}[/tex]Final ANswer
the perimeter of this rectangle =
[tex]2(x_2-x_1+y_1-y_2)[/tex]
