👤

Answer :

The given expression is,

[tex](4x-2)(2x^2+3)\text{ ----(1)}[/tex]

We know, (a+b)(c+d)=a(b+c)+b(c+d).

Hence, applying the above indentity to expression (1),

[tex]4x(2x^2+3)-2(2x^2+3)[/tex]

Also, a(b+c)=ab+ac. Applying this identity to the above expression, we get

[tex]4x\times2x^2+4x\times3-2\times2x^2-2\times3[/tex]

Multiplying the terms,

[tex]8x^3+12x-4x^2-6[/tex]

Rearrange the terms.

[tex]8x^3-4x^2+12x-6[/tex]

Therefore, the product of the given expression is,

[tex]8x^3-4x^2+12x-6[/tex]

Hence, option (D) is correct.