👤

Answer :

Answer:

[tex]y=\frac{16}{9}x-\frac{1}{9}[/tex]

Explanations:

The formula for calculating the equation of a line is expressed as:

y = mx + b

where:

• m is the, slope, of the line

,

• b is the ,y-intercept

Given the coordinate points (-5,-9) and (4,7)

Determine the slope

[tex]\begin{gathered} Slope=\frac{y_2-y_1}{x_2-x_1} \\ Slope=\frac{7-(-9)}{4-(-5)} \\ Slope=\frac{7+9}{4+5} \\ Slope=\frac{16}{9} \end{gathered}[/tex]

Determine the y-intercept of the line

Recall that y = mx + b

[tex]\begin{gathered} 7=\frac{16}{9}(4)+b \\ 7=\frac{64}{9}+b \\ b=7-\frac{64}{9} \\ b=-\frac{1}{9} \end{gathered}[/tex]

Determine the required equation

[tex]\begin{gathered} y=mx+b \\ y=\frac{16}{9}x+(-\frac{1}{9}) \\ y=\frac{16}{9}x-\frac{1}{9} \end{gathered}[/tex]

Go Teaching: Other Questions