Answer :
Let,
[tex]\begin{gathered} (x_1,y_1)=(10,4) \\ (x_2,y_2)=(-10,0) \end{gathered}[/tex]The expression that represents the equation of line passing through given pair of points is,
[tex]\frac{y-y_1}{y_{2_{}}-y_1}=\frac{x-x_1}{x_2-x_1}[/tex]Substitute values in the above expression.
[tex]\begin{gathered} \frac{y-4}{0-4}=\frac{x-10}{-10-10} \\ \frac{y-4}{-4}=\frac{x-10}{-20} \\ y-4=-4\times\frac{x-10}{-20} \\ y-4=\frac{x-10}{5} \\ 5y-20=x-10 \\ x-5y-10+20=0 \\ x-5y+10=0 \end{gathered}[/tex]Thus, the equation of the line passing through the points (10,4) & (-10,0) is x-5y+10=0.