👤

Answer :

[tex]\frac{1}{16y^{28}}[/tex]

STEP - BY - STEP EXPLANATION

What to find?

The solution to the system of equation.

Given:

(12y¹¹ /6 y⁴)⁻⁴

[tex](\frac{12y^{11}}{6y^4})^{-4}[/tex]

To solve the given problem, we will follow the steps below:

Step 1

Recall the law of indices that is applicable.

That is;

[tex]\begin{gathered} \frac{a^3^{}^{}^{}}{a^2}=a^{3-2} \\ \\ a^{-2}=\frac{1}{a^2} \end{gathered}[/tex]

Step 2

Apply the first law on the given expression.

[tex]\begin{gathered} (2y^{11-4})^{-4} \\ \\ (2y^7)^{-4} \end{gathered}[/tex]

Step 3

Apply the second law to the above.

[tex]=\frac{1}{(2y^7)^4}[/tex][tex]=\frac{1}{16y^{28}}[/tex]

Therefore,

[tex](\frac{12y^{11}}{6y^4})^{-4}=\frac{1}{16y^{28}}[/tex]