👤

Answer :

We are asked to write an exponential function of the form

[tex]y=ab^x[/tex]

The function passes through the following two points

(3, 2) and (6, 16)

Let us substitute these two points into the above equation.

For point (3, 2):

[tex]\begin{gathered} 2=ab^3 \\ a=\frac{2}{b^3} \end{gathered}[/tex]

For point (6, 16):

[tex]\begin{gathered} 16=ab^6 \\ a=\frac{16}{b^6} \end{gathered}[/tex]

Equate the two equations to solve for b

[tex]\begin{gathered} \frac{2}{b^3}=\frac{16}{b^6} \\ 2\cdot b^6=16\cdot b^3 \\ \frac{2b^6}{2b^3}=\frac{16b^3}{2b^3} \\ b^3=8 \\ b=\sqrt[3]{8} \\ b=2 \end{gathered}[/tex]

So, the value of b is 2

Finally, the value of a is given by

[tex]a=\frac{2}{b^3}=\frac{2}{(2)^3}=\frac{2}{8}=\frac{1}{4}[/tex]

So, the value of a is 1/4

Therefore, the exponential function is

[tex]y=\frac{1}{4}\cdot2^x[/tex]