👤

Answer :

Answer:

The distance between L and the line KH and HF is;

[tex]27[/tex]

The value of y is;

[tex]y=9[/tex]

Explanation:

Given the figure in the attached image;

[tex]\begin{gathered} KL=27 \\ KHL=(6y)^{\circ} \\ FHL=(4y+18)^{\circ} \end{gathered}[/tex]

From the image;

[tex]KL=FL=27[/tex]

So, the distance between L and the line KH and HF is;

[tex]27[/tex]

Also, the triangles KHL and FHL are congruent.

So, the angles KHL and FHL are congruent.

[tex]m\measuredangle KHL\cong m\measuredangle FHL[/tex]

Substituting the expressions;

[tex]\begin{gathered} (6y)^{\circ}=(4y+18)^{\circ} \\ 6y=4y+18 \\ 6y-4y=18 \\ 2y=18 \\ y=\frac{18}{2} \\ y=9 \end{gathered}[/tex]

Therefore, the value of y is;

[tex]y=9[/tex]