According to the diagram, how far is point L from Rays KH and HF?Find the value of Y

Answer:
The distance between L and the line KH and HF is;
[tex]27[/tex]The value of y is;
[tex]y=9[/tex]Explanation:
Given the figure in the attached image;
[tex]\begin{gathered} KL=27 \\ KHL=(6y)^{\circ} \\ FHL=(4y+18)^{\circ} \end{gathered}[/tex]From the image;
[tex]KL=FL=27[/tex]So, the distance between L and the line KH and HF is;
[tex]27[/tex]Also, the triangles KHL and FHL are congruent.
So, the angles KHL and FHL are congruent.
[tex]m\measuredangle KHL\cong m\measuredangle FHL[/tex]Substituting the expressions;
[tex]\begin{gathered} (6y)^{\circ}=(4y+18)^{\circ} \\ 6y=4y+18 \\ 6y-4y=18 \\ 2y=18 \\ y=\frac{18}{2} \\ y=9 \end{gathered}[/tex]Therefore, the value of y is;
[tex]y=9[/tex]