👤

Answer :

Final Answer:Given: The trigonometric function

[tex]sin\theta=\frac{3\sqrt{2}}{5}\text{ and }\frac{\pi}{2}<\theta<\pi[/tex]

Required: To determine the exact value of

[tex]cos2\theta\text{ and sin\lparen}\frac{\theta}{2})[/tex]

Explanation: Using the trigonometric identity.

[tex]cos2\theta=1-2sin^2\theta[/tex]

We get,

[tex]\begin{gathered} cos2\theta=1-2\times(\frac{3\sqrt{2}}{5})^2 \\ =1-\frac{36}{5} \\ =-\frac{31}{36} \end{gathered}[/tex]

Since theta lies in the second quadrant cos will be negative.

Now,

[tex]\begin{gathered} cos\theta=\sqrt{1-sin^2\theta} \\ =\sqrt{1-\frac{18}{25}} \end{gathered}[/tex]

which gives

[tex]cos\theta=-\frac{\sqrt{7}}{5}[/tex]

And,

[tex]cos\theta=1-2sin^2\frac{\theta}{2}[/tex]

or

[tex]sin\frac{\theta}{2}=\sqrt{\frac{1-cos\theta}{2}}[/tex]

Putting the values we get

[tex]sin\frac{\theta}{2}=\sqrt{\frac{1+\frac{\sqrt{7}}{5}}{2}}[/tex][tex]sin\frac{\theta}{2}=\sqrt{\frac{5+\sqrt{7}}{10}}[/tex]

Final Answer:

[tex]\begin{gathered} cos\theta=-\frac{\sqrt{7}}{5} \\ s\imaginaryI n\frac{\theta}{2}=\sqrt{\frac{5+\sqrt{7}}{10}} \end{gathered}[/tex]

Go Teaching: Other Questions