👤

Answer :

The critical values of a curve f(x) are thepoints in its domain where the derivative f'(x) is zero or not defined.

Given:

It is given that

[tex]f(x)=x^3-3x^2+29[/tex]

To find critical points first let us find f'(x)

[tex]\begin{gathered} f^{\prime}(x)=\frac{d}{dx}(x^3-3x^2+29) \\ =3x^2-6x \\ =3x(x-2) \end{gathered}[/tex]

Now on setting f'(x)=0 we have,

[tex]\begin{gathered} 3x(x-2)=0 \\ \Rightarrow3x=0,x-2=0 \\ \Rightarrow x=0,2 \end{gathered}[/tex]

So, the critial values are x=0,2.