Answer :
Solution
Step 1
[tex]\begin{gathered} The\text{ general equation of a circle is in the form of} \\ (x-h)^2+(y-k)^2=r^2 \\ \\ Where\text{ \lparen h,k\rparen is the center and r is the radius} \end{gathered}[/tex]Step 2
Given data:
Center = (h.k) = (1,2) and radius r = 5
Step 3
Substitute the values into the equation.
[tex]\begin{gathered} (x-1)^2+(y-2)^2=5^2 \\ \\ (x-1)^2+(y-2)^2=25 \end{gathered}[/tex]Final answer
[tex](x-1)^2+(y-2)^2=25[/tex]