Answer :
Answer:
Step-by-step explanation:
Let's say that we have the line y=(1/4)x + 5 and the perpendicular line y' = mx+c.
The slope of the line (m) y' can be calculated as follows:
[tex]m_{y^{\prime}}.m_y=-1[/tex]So,
[tex]\begin{gathered} m_{y^{\prime}}.\frac{1}{4}=-1 \\ m_{y^{\prime}}=-1\cdot\frac{4}{1} \\ m_{y^{\prime}}=-4 \end{gathered}[/tex]We can write the line y' as y'= -4x + b.
Now, we can use the point (2, -3) to find the value of b:
[tex]\begin{gathered} y^{\prime}=-4x+b \\ -3=-4(2)+b \\ -3=-8+b \\ -3+8=b \\ b=5 \end{gathered}[/tex]