👤

Answer :

Answer:

Step-by-step explanation:

Let's say that we have the line y=(1/4)x + 5 and the perpendicular line y' = mx+c.

The slope of the line (m) y' can be calculated as follows:

[tex]m_{y^{\prime}}.m_y=-1[/tex]

So,

[tex]\begin{gathered} m_{y^{\prime}}.\frac{1}{4}=-1 \\ m_{y^{\prime}}=-1\cdot\frac{4}{1} \\ m_{y^{\prime}}=-4 \end{gathered}[/tex]

We can write the line y' as y'= -4x + b.

Now, we can use the point (2, -3) to find the value of b:

[tex]\begin{gathered} y^{\prime}=-4x+b \\ -3=-4(2)+b \\ -3=-8+b \\ -3+8=b \\ b=5 \end{gathered}[/tex]