👤

Answer :

Assuming that x≠0 we get that:

[tex]\frac{1-\frac{1}{x}}{3+\frac{1}{x}}=\frac{1-\frac{1}{x}}{3+\frac{1}{x}}*\frac{x}{x}.[/tex]

Simplifying the above result we get:

[tex]\frac{1-\frac{1}{x}}{3+\frac{1}{x}}*\frac{x}{x}=\frac{(1-\frac{1}{x})*x}{(3+\frac{1}{x})*x}.[/tex]

Applying the distributive property we get:

[tex]\frac{(1-\frac{1}{x})*x}{(3+\frac{1}{x})*x}=\frac{x-1}{3x+1}.[/tex]

Therefore:

[tex]\frac{1-\frac{1}{x}}{3+\frac{1}{x}}=\frac{x-1}{3x+1}.[/tex]

Answer:

[tex]\begin{equation*} \frac{x-1}{3x+1}. \end{equation*}[/tex]