Answer :
[tex]1.2068[/tex]Expalantion:[tex]\begin{gathered} \text{Given:} \\ \log _{35}\text{ 73} \\ \\ To\text{ apply change of base:} \\ \text{ we will divide the log of the number in base 10 by the log of the base in base 10} \\ \text{for example: log}_ab\text{ = }\frac{\log _{10}b}{\log _{10}a} \\ \\ In\text{ this case:} \\ \text{ we will divide the log of 73 in base 10 by the log of the base in base 10} \end{gathered}[/tex][tex]\begin{gathered} \log \text{ of the base = log 35} \\ In\text{ base 10 = }\log _{10}35 \\ \log _{35}73\text{ = }\frac{\log_{10}73}{\log_{10}35} \end{gathered}[/tex][tex]\begin{gathered} \log _{35}73\text{ = }\frac{1.86332286}{1.54406804} \\ \log _{35}73\text{ = 1.2067}6215 \\ To\text{ the nearest ten thousandth,} \\ \log _{35}73\text{ = }1.2068 \end{gathered}[/tex]