👤

Answer :

Answer:

y = 4.62

x = 2.31

Explanation:

The cosine ratio for 30 degrees gives

[tex]\cos 30^o=\frac{4}{y}[/tex]

multiplying both sides by y gives

[tex]y\cos 30^o=4[/tex]

Finally, dividing both sides by cos 30 gives

[tex]y=\frac{4}{\cos 30^o}[/tex]

Since

[tex]\cos 30^o=\frac{\sqrt[]{3}}{2}[/tex]

The above gives

[tex]y=\frac{4}{\frac{\sqrt[]{3}}{2}}[/tex][tex]\boxed{y=\frac{8\sqrt[]{3}}{3}\approx4.62.}[/tex]

Now we find the value of x.

The tangent ratio for 30 degrees gives

[tex]\tan 30^o=\frac{x}{4}[/tex]

multiplying both sides by 4 gives

[tex]x=4\tan 30^o[/tex]

Now since

[tex]\tan 30^o=\frac{\sqrt[]{3}}{3}[/tex]

the above gives

[tex]x=4\cdot\frac{\sqrt[]{3}}{3}[/tex][tex]\boxed{x\approx2.31.}[/tex]

Hence, to summarize

y = 4.62

x = 2.31