Answer :
Answer:
y = 4.62
x = 2.31
Explanation:
The cosine ratio for 30 degrees gives
[tex]\cos 30^o=\frac{4}{y}[/tex]multiplying both sides by y gives
[tex]y\cos 30^o=4[/tex]Finally, dividing both sides by cos 30 gives
[tex]y=\frac{4}{\cos 30^o}[/tex]Since
[tex]\cos 30^o=\frac{\sqrt[]{3}}{2}[/tex]The above gives
[tex]y=\frac{4}{\frac{\sqrt[]{3}}{2}}[/tex][tex]\boxed{y=\frac{8\sqrt[]{3}}{3}\approx4.62.}[/tex]Now we find the value of x.
The tangent ratio for 30 degrees gives
[tex]\tan 30^o=\frac{x}{4}[/tex]multiplying both sides by 4 gives
[tex]x=4\tan 30^o[/tex]Now since
[tex]\tan 30^o=\frac{\sqrt[]{3}}{3}[/tex]the above gives
[tex]x=4\cdot\frac{\sqrt[]{3}}{3}[/tex][tex]\boxed{x\approx2.31.}[/tex]Hence, to summarize
y = 4.62
x = 2.31