👤

Answer :

Answer: [tex]\begin{gathered} Equation\text{ = }\frac{\theta}{360}\text{\times2}\times\text{\pi}\times r \\ Equation\text{ = }\frac{320}{360}\text{\times 2}\times\text{\pi}\times5 \\ \\ length\text{ of the arc = }\frac{80π}{9} \end{gathered}[/tex]

Explanation:

Given:

11) arc BC = 40°

highlighted arc = ?

radius = 5 in

To find:

the length of the highlighted arc

First we need to find the measure of the highlighted arc

highlighted arc + BC = 360°

highlighted arc + 40° = 360°

highlighted arc = 360 - 40

highlighted arc= 320°

The formula for length of an arc when the angle is in degrees:

[tex]\begin{gathered} Length\text{ of an arc = \theta/360 \times 2\pi r} \\ where\text{ r = radius} \\ θ=\text{ angle = highlighted arc} \end{gathered}[/tex]

Substitute the values into the formula:

[tex]\begin{gathered} length\text{ of the arc = }\frac{320}{360}\text{\times 2}\times\text{\pi}\times5 \\ \\ length\text{ of the arc = }\frac{8}{9}\times10π \\ \\ length\text{ of the arc = }\frac{80π}{9} \end{gathered}[/tex]