👤

Answer :

Trigonometric Ratios in a Right Triangle

Right triangles are identified because they have an interior angle of 90° (right angle).

In right triangles, the trigonometric ratios are satisfied. For example, the following ratios are defined as:

[tex]\sin \theta=\frac{opposite\text{ leg}}{\text{hypotenuse}}[/tex][tex]\tan \theta=\frac{\text{opposite leg}}{adjacent\text{ leg}}[/tex]

Where the hypotenuse is the side opposite to the right angle.

If we use the angle A=70°:

[tex]\tan A=\frac{a}{b}[/tex]

Solving for b:

[tex]b=\frac{a}{\tan 70^0}=\frac{2}{2.7475}=0.7279[/tex][tex]\sin 70^o=\frac{a}{c}[/tex]

Solving for c:

[tex]c=\frac{a}{\sin 70^o}=\frac{2}{0.9397}=2.1284[/tex]

Rounding to one decimal place:

b=0.7

c=2.1

Go Teaching: Other Questions