👤

Answer :

SOLUTION

Given the question in the image, the following are the solution steps to answer the question.

STEP 1: Write the equations

[tex]\begin{gathered} 4x+y=10 \\ 5x=19+2y \end{gathered}[/tex]

STEP 2: solve the equations algebraically

[tex]\begin{gathered} \mathrm{Substitute\:}x=\frac{10-y}{4} \\ \begin{bmatrix}5\cdot \frac{10-y}{4}=19+2y\end{bmatrix} \\ \frac{50-5y}{4}=19+2y \\ 50-5y=76+8y \\ 50-76=8y+5y \\ -26=13y \\ y=\frac{-26}{13} \\ y=-2 \\ \end{gathered}[/tex]

STEP 3: Solve for x

[tex]\begin{gathered} \mathrm{For\:}x=\frac{10-y}{4} \\ \mathrm{Substitute\:}y=-2 \\ x=\frac{10-\left(-2\right)}{4} \\ x=3 \end{gathered}[/tex]

Hence, the values are given as:

x = 3

y = -2