👤

Answer :

Given:

The parabola equation is,

[tex]f\mleft(x\mright)=-3\mleft(x-3\mright)^2+3[/tex]

To find:

domain and range of the graph.

Explanation:

Domain:

The domain of a function is the set of input values for which the function is real and defined.

the function here dose not have any undefined points. So,

the domain is,

[tex]-\infty\: Range;

The set of values of the dependent variable for which the function is defined.

for parabola ,

[tex]ax^2+bx+c\: [/tex]

with the vertex,

[tex](x_v,\: y_v)[/tex][tex]\begin{gathered} if\: a<0\: \text{ the range is,}f\mleft(x\mright)\le\: y_v \\ \text{if }\: a>0\text{ the range is, }f\mleft(x\mright)\ge\: y_v \end{gathered}[/tex]

then,

[tex]\begin{gathered} a=-3 \\ \text{vertices: (}x_v,\: y_v)=(3,\: 3) \end{gathered}[/tex]

hence,

[tex]f\mleft(x\mright)\le\: 3[/tex]

The maximum point is (3,3).

Final Answer:

Domain of the parabola is,

[tex]-\infty\: Range of the parabola is,[tex]f\mleft(x\mright)\le\: 3[/tex]

in interval notation the range is,

[tex]\: \: (-\infty\: ,\: 3\rbrack[/tex]

the vertex of the parabola is,

[tex](3,3)[/tex]