I need to find the equation in the standard form of the ellipse when I'm given the focus in the vertex picture included

The equation of the ellipse in the standard form is written in the form,
[tex]\frac{x^2}{a^2}+\frac{y^2}{b^2}=[/tex]Given:
[tex]\begin{gathered} Focus=(2,0),\text{ so c=2,c}^2=2^2=4 \\ Vertex=(5,0),\text{ so a=2,}a^2=5^2=25 \end{gathered}[/tex]Therefore, let us evaluate for b^2
[tex]\begin{gathered} c^2=a^2-b^2 \\ 4=25-b^2 \\ b^2=25-4=21 \\ \therefore b^2=21 \end{gathered}[/tex]Let us substitute the values of a^2=25, and b^2=21 into the standard form of the equation
[tex]\frac{x^2}{25}+\frac{y^2}{21}=1[/tex]Hence, the answer is
[tex]\frac{x^2}{25}+\frac{y^2}{21}=1[/tex]