👤

Answer :

To find the x-intercept(s), we can use the quadratic formula:

[tex]x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}[/tex]

This formula is applied when we have a polynomial of the form:

[tex]ax^2+bx+c=0[/tex]

We have that our case is:

[tex]\frac{1}{4}x^2+\frac{3}{2}x-\frac{1}{8}=0[/tex]

To find the x-intercepts of the parabola. However, we can find the least common multiple of the denominators to have an easier equation to solve. Then, we have:

[tex]\operatorname{lcm}(4,2,8)=8[/tex]

Then, we can multiply each side of the equation by 8 as follows:

[tex]8(\frac{1}{4}x^2+\frac{3}{2}x-\frac{1}{8}=0)[/tex]

[tex]\frac{8}{4}x^2+\frac{8\cdot3}{2}x-\frac{8\cdot1}{8}=8\cdot0\Rightarrow2x^2+12x-1=0[/tex]

Now, we have that:

a = 2

b = 12

c = -1

Then, we have:

[tex]x=\frac{-12\pm\sqrt[]{12^2^{}-4(2)(-1)}}{2\cdot2}[/tex]

[tex]x=\frac{-12\pm\sqrt[]{144+8}}{4}\Rightarrow x=\frac{-12\pm\sqrt[]{152}}{4}[/tex]

Then

[tex]\sqrt[]{152}=\sqrt[]{2^2\cdot2\cdot19}=2\cdot\sqrt[]{38}[/tex]

Then, the two x-intercepts are:

[tex]x=\frac{-12\pm2\cdot\sqrt[]{38}}{4}[/tex]

[tex]x=\frac{-12+2\cdot\sqrt[]{38}}{4}\Rightarrow x=-\frac{12}{4}+\frac{2\cdot\sqrt[]{38}}{4}=-3+\frac{\sqrt[]{38}}{2}[/tex]

And

[tex]x=\frac{-12-2\cdot\sqrt[]{38}}{4}\Rightarrow x=-\frac{12}{4}-\frac{2\cdot\sqrt[]{38}}{4}=-3-\frac{\sqrt[]{38}}{2}[/tex]

Therefore:

The smallest x-intercept is:

[tex]-3-\frac{\sqrt[]{38}}{2}[/tex]

The largest x-intercept is:

[tex]-3+\frac{\sqrt[]{38}}{2}[/tex]

Finding the value of the vertex

To find the vertex of the parabola, we can find its x-value, and y-value using the following formulas:

[tex]x_v=-\frac{b}{2a},y_v=c-\frac{b^2}{4a}_{}[/tex]

In the original equation, we have:

a = 1/4

b = 3/2

c = -1/8

Then, we have:

[tex]x_v=-\frac{\frac{3}{2}}{2(\frac{1}{4})_{}}=-\frac{\frac{3}{2}}{\frac{2}{4}}=-\frac{3}{2}\frac{4}{2}=-\frac{3\cdot4}{4}\Rightarrow x_v=-3[/tex]

And

[tex]y_v=-\frac{1}{8}-\frac{(\frac{3}{2})^2}{4(\frac{1}{4})}=-\frac{1}{8}-\frac{\frac{9}{4}}{1}=-\frac{1}{8}-\frac{9}{4}=-(\frac{1}{8}+\frac{9}{4})=-(\frac{4+72}{32})[/tex]

Finally:

[tex]y_v=-\frac{76}{32}\Rightarrow y_v=-\frac{19}{8}[/tex]

Therefore, the vertex of the parabola is:

[tex](-3,-\frac{19}{8})[/tex]

In summary, we have:

The coordinates for the vertex are:

[tex](-3,-\frac{19}{8})[/tex]

The smallest x-intercept (only the

View image SirenaG451713