Answer :
Solution
The iron pillar should look like this
The volume of the cylindrical part = πr²h
[tex]V=\pi r^2h=\frac{22}{7}\times8\times240=\frac{337920}{7}\text{ cm}^3[/tex]The volume of the conical part = 1/3 x base area x height
[tex]V_{Cone}=\frac{1}{3}\times\frac{22}{7}\times8^2\times36=\frac{16896}{7}\text{ cm}^2[/tex]Therefore, Total volume
[tex]TV=V+V_{Cone}=\frac{337920}{7}+\frac{16896}{7}=50688\text{ cm}^2[/tex]Mass = Density x Volume
= 7.8 x 50688
= 395366.4 g
= 395.3664 kg
Weight = 395.3664 x 10 = 3953.664 N
