Answer :
Given data:
The area of the single plywood is a= 32 sq-feet.
The given figure of the ramp.
The expression for the hypotenuse of the triangle is,
[tex]\begin{gathered} (3ft)^2+(4ft)^2=h^2 \\ h^2=(25)ft^2 \\ h=5\text{ ft} \end{gathered}[/tex]The area of the ramp is,
[tex]\begin{gathered} A=2\times\frac{1}{2}(3\text{ ft)(4 ft)+}(10\frac{2}{5}\text{ ft)( 5 ft)+}(3\text{ ft)}(10\frac{2}{5}\text{ ft)}+(4\text{ ft)}(10\frac{2}{5}\text{ ft)} \\ =(3\text{ ft)(4 ft)+}(10.4\text{ ft)( 5 ft)+}(3\text{ ft)}(10.4\text{ ft)}+(4\text{ ft)}(10.4\text{ ft)} \\ =136.8ft^2 \end{gathered}[/tex]The numbers of plywood sheet require are,
[tex]\begin{gathered} n=\frac{A}{a} \\ =\frac{136.8ft^2}{32ft^2} \\ =4.275 \\ \approx5 \end{gathered}[/tex]Thus, the numbers of plywood sheet needs are 5, so option (H) is correct.