1. Find the missing parts of the triangle. Round to the nearest tenth when necessary or to the nearest minute as appropriate.

SOLUTION
Given the question in the image, the following are the solution steps to answer the question.
STEP 1: Write the given sides
[tex]\begin{gathered} a=7.3in \\ b=13.2in \\ c=15.8in \end{gathered}[/tex]STEP 2: Write the formula to calculate the missing angles
To get the missing angles, we use the cosine laws and sine laws stated below:
[tex]\begin{gathered} a^2=b^2+c^2-2bc\cos A \\ b^2=a^2+c^2-2ac\cos B \\ c^2=a^2+b^2-2ab\cos C \\ \\ Sine\text{ law:} \\ \frac{\sin A}{a}=\frac{\sin B}{b}=\frac{sinC}{c} \end{gathered}[/tex]STEP 3: Use the cosine law to find the angle A
[tex]\begin{gathered} a^2=b^2+c^2-2bc\cos A \\ Making\text{ sin A the subject of the formula, we have:} \\ -2bc\cos A=a^2-b^2-c^2 \\ \sin A=\frac{a^2-b^2-c^2}{-2bc} \\ \\ By\text{ substitution,} \\ \cos A=\frac{7.3^2-13.2^2-15.8^2}{-2(13.2\times15.8^)} \\ \cos A=\frac{-370.59}{-417.12}=0.888449367 \\ A=\cos^{-1}0.888449367 \\ A=27.3209628 \\ A\approx27.3^{\circ} \end{gathered}[/tex]Angle A = 27.3 degrees
STEP 4: Find Angle B
Using sine rule, we have:
[tex]\begin{gathered} \frac{\sin A}{a}=\frac{\sin B}{b} \\ By\text{ substitution,} \\ \frac{\sin27.3}{7.3}=\frac{\sin B}{13.2} \\ By\text{ cross multiplication,} \\ sinB\times7.3=sin27.3\times13.2 \\ sinB=\frac{\sin27.3\times13.2}{7.3} \\ \sin B=0.82933892 \\ B=\sin^{-1}0.82933892 \\ B=56.0308892 \\ B=56.1^{\circ} \end{gathered}[/tex]STEP 5: Calculate the Angle C
Recall that the sum of angles in a triangle is 180 degrees, therefore,
[tex]\begin{gathered} A+B+C=180^{\circ} \\ By\text{ substitution,} \\ 27.3^{\circ}+56.1^{\circ}+C=180^{\circ} \\ C=180^{\circ}-27.3^{\circ}-56.1^{\circ} \\ C=180^{\circ}-83.4=96.6^{\circ} \end{gathered}[/tex]Hence, the angles are:
[tex]A=27.3^{\circ},B=56.1^{\circ},C=96.6^{\circ}[/tex]OPTION A