Answer :
Solution:
Given:
[tex]\begin{gathered} \text{markup}=\text{ \$7.20} \\ \text{Selling price (S.P)= \$43.20} \\ \text{Cost price (C.P)=?} \end{gathered}[/tex][tex]\text{markup}=\text{Selling price-cost price}[/tex]To get the Cost price,
[tex]\begin{gathered} \text{Cost price (C.P)=Selling price-markup} \\ C\mathrm{}P=43.20-7.20 \\ C\mathrm{}P=\text{ \$36} \end{gathered}[/tex]
To calculate the percentage markup, the formula below is used;
[tex]\begin{gathered} \text{Percent markup=}\frac{\text{markup}}{\cos t\text{ price}}\times100\text{ \%} \\ \text{Percent markup=}\frac{7.20}{36}\times100\text{ \%} \\ \text{Percent markup=}\frac{720}{36}\text{ \%} \\ \text{Percent markup= 20\%} \end{gathered}[/tex]
Therefore, the percent markup on cost is 20%