👤

Answer :

EXPLANATION

Given the equation:

x^3 -2x^2 -5x + 10 = 0

Grouping terms:

[tex]=(x^3-2x^2)+(-5x+_{}10)[/tex]

Factor out -5 from (-5x+10) and x^2 from (x^3-2x^2):

[tex]=x^2(x-2)-5(x-2)[/tex]

Factor out common term x-2:

[tex]=(x-2)(x^2-5)[/tex]

Factor x^2-5:

[tex]x^2-5=x^2-(\sqrt[]{5})^2[/tex]

Apply difference of two squares formula:

[tex]x^2-y^2=(x+y)(x-y)[/tex][tex]x^2-(\sqrt[]{5})^2=(x+\sqrt[]{5})(x-\sqrt[]{5})[/tex]

Grouping factor:

[tex]=(x-2)(x+\sqrt[]{5})(x-\sqrt[]{5})[/tex]

Equaling to zero in order to get the roots:

[tex](x-2)(x+\sqrt[]{5})(x-\sqrt[]{5})=0[/tex]

Using the zero factor principle:

[tex]\text{If ab=0, then a=0 or b=0}[/tex][tex]x-2=0\longrightarrow\text{ x=2 \lbrack{}First root\rbrack}[/tex][tex]x+\sqrt[]{5}=0\longrightarrow\text{ x=-}\sqrt[]{5}\text{ \lbrack{}Second root\rbrack}[/tex][tex]x-\sqrt[]{5}=0\longrightarrow\text{ x=}\sqrt[]{5}\lbrack Third\text{ Root\rbrack}[/tex]

The roots are:

x=2, x=-sqrt(5) and x=sqrt(5)

Go Teaching: Other Questions