Given the graph, description or sequence values create both an explicit and a recursive function 23.

by the values of the table, you can write for the recursive function:
[tex]a_n=2a_{n-1}[/tex]and for the explicit function:
[tex]a_n=2^{n-3}[/tex]For the recursive function, you can identify that each term is twice the previous one.
For the explcit function, you can replace the values of n for each given term, and verify:
[tex]\begin{gathered} a_5=2^{5-3}=2^2=4 \\ a_6=2^{6-3}=2^3=8 \\ a_7=2^{7-3}=2^4=16 \end{gathered}[/tex]